Common XPath Queries
XML documents are treated as trees of nodes. The topmost element of the tree is called the root element. Look at the following XML document as a reference for types of nodes you will find in documents:
	<bookstore>
 <book>
 <title lang="en">Harry Potter</title>
 <author>J K. Rowling</author>
 <year>2005</year>
 <price>29.99</price>
 </book>
</bookstore>

	

Example of nodes in the XML document above:
	<bookstore> (root element node – Top of the XML document)

<author>J K. Rowling</author> (element node – Either a value or further nested elements)

lang="en" (attribute node – A value attached to an element)

XPath queries are a very efficient method of navigating an XML document to identify a particular data element required, whether that is a set of nodes, a single node element or an attribute node. The result of an XPath query will depend on the context in which it is being used. For example, you may be selecting a number of elements for further processing, or trying to retrieve a string value, or looking for a “true” or “false” result.
A basic XPath query structure is very simple, but with a little more knowledge of the syntax options, very complex queries can be easily constructed. WebMaker allows you to “drag” on simple XPath matches within the studio. XPath queries are used in FormMaker for Web Page Data Bindings and in RuleMaker for rules processing.
This document describes the most common types of XPath used to solve particular problems, or when trying to identify data elements within complex XML structures.

Note: If you are completely new to XML, then we would recommend that you have a quick read through the W3Schools XPath Tutorial. An excellent resource for learning XPath syntax: http://www.w3schools.com/xpath/xpath_syntax.asp

Common XPath Constructs

	XPath construct
	Description

	/
	Denotes the root of the tree in an XPath expression for the XML document. For example, /PO refers to the root element of the document whose name is PO.

	/
	Also used as a path separator to identify the children node of any given node. For example, /PurchaseOrder/Reference identifies the element named Reference, which is a child of the PurchaseOrder root element.

	//
	Used to identify all descendants of the current node. For example, PurchaseOrder//ShippingInstructions matches any ShippingInstructions elements under the PurchaseOrder element, regardless of the number of levels in the hierarchy between them.

	*
	Used as a wildcard to match any child node. For example, /PO/*/STREET matches any street element that is a grandchild of the PO element.

	[]
	Predicate (index or filter) - Used to denote predicate expressions. XPath supports a rich list of binary operators such as OR, AND, and NOT. For example, /PO[PONO=20 and PNAME="PO_2"]/SHIPADDR selects out the shipping address element of all purchase orders whose purchase order number is 20 and whose purchase order name is PO_2.
[] is also used to denote an index into a list. For example, /PO/PONO[2] identifies the second purchase order number element under the PO root element.

	.
	Selects the current node

	..
	Selects the parent of the current node

	@
	Attribute - Used to identify an xml node that is an attribute of an xml element. For example, MenuItem/@caption would match the caption attribute on the MenuItem element, and MenuItem[@caption='abc'] would find all Menu items that have a caption attribute with a value of 'abc'.

	+. -, *, div, mod, and, or, not, =, !=, >, >=, <, <=
	Logical Operators – An example of an XPath with operators that more accurately identifies an element: MenuItem[@caption = 'a' or @windowid != 'b' and @priorlabel = 'p']

	Namespaces
	Each node in an XML document can be placed into a particular namespace. For example, you may have two PurchaseOrder elements from different suppliers, and so can use their differing namespaces to correctly identify each one.

The namespace an element is in is defined in the XML using the xmlns=’URI’ attribute on an element. This specifies the namespace URI value that should apply to the element, and any children elements.

It is also possible to define a prefix in a namespace definition and then specifically associate each element to this prefix e.g.
<ns1:PurchaseOrder xmlns:ns1=’URI’>

When writing XPath queries you need to indicate for each step in the query which namespace the node is in. To make this easier, you use the prefix values in your XPaths rather than having to include the long URI values. (e.g. /ns1:PurchaseOrder)
At the bottom of the FormMaker Data Bindings screen or the RuleMaker Rules screen you are able to see the namespaces that are defined and the prefix associated with each one. These are the prefixes that should be used in the XPaths for that page or set of rules. It is possible for a document to define a different prefix for a particular namespace URI, but it is always those listed on the screen that will be used when evaluating your XPath queries.
If there is an xmlns='' present in the XML, then this means no-namespace, so there is no prefix used in the XPath.
Using the correct namespace prefixes is very important to ensure the XML element is selected correctly.

	Functions
	XPath supports a set of built-in functions such as substring(…), contains(…), and not(…).

Common XPath Queries

We will use the following example WebMaker XML document, which provides a an example of a fairly common structure within WebMaker during construction of Web Pages and calling Web Services or SQL Databases.
	

	<?xml version="1.0" encoding="UTF-8"?>
<eForm xmlns="http://www.hyfinity.com/mvc" xmlns:mvc="http://www.hyfinity.com/mvc">

<Control>

<action>getAccounts</action>

<Page />

<Controller />

</Control>

<Data>

<formData>

<searchFor>Erik</searchFor>

<selectedBookNumber>3</selectedBookNumber>

</formData>

<orders xmlns="http://www.bookstore.co.uk/account/orders">

<book category="COOKING" id="100565">

<title lang="it">Everyday Italian</title>

<author> Erik De Laurentiis</author>

<year>2005</year>

<price>30.00</price>

</book>

<book category="CHILDREN" id="1500227">

<title lang="en">Harry Potter</title>

<author>J K. Rowling</author>

<year>2005</year>

<price>29.99</price>

</book>

<book category="WEB" id="200922">

<title lang="en">XQuery Kick Start</title>

<author>James McGovern</author>

<author>Per Bothner</author>

<author>Kurt Cagle</author>

<author>James Linn</author>

<author>Vaidyanathan Nagarajan</author>

<year>2003</year>

<price>49.99</price>

</book>

<book category="WEB" id="200956">

<title lang="en">Learning XML</title>

<author>Erik T. Ray</author>

<year>2003</year>

<price>39.95</price>

</book>

</orders>

<categories xmlns="">

<category seq="100" type="WEB">Web Reference Books</category>

<category seq="200" type="COOKING">Cooking Books</category>

<category seq="300" type="CHILDREN">Children’s Books</category>

<category seq="900">Other Books</category>

</categories>

</Data>
</eForm>

When looking at the following XPath examples, you can assume that the namespace prefixes defined are:

mvc: http://www.hyfinity.com/mvc

(Hyfinity WebMaker default namespace)
ns1: http://www.bookstore.co.uk/account/orders

	Ref
	Common Usage Scenario
	XPath Query Example

	1.1
	Select a field value:

Select a particular element’s value.
	Select the search field from the form fields
/mvc:eForm/mvc:Data/mvc:formData/searchFor

	1.2
	Select element by occurrence value:

Select a particular occurrence of an element that is repeated.
Note: If position is not defined for multiple occurrences then the first occurrence is output as a text value, unless in a repeat then the relevant occurrence value is shown.
	Select the title of the second book

 /mvc:eForm/mvc:Data/ns1:orders/ns1:book[2]/ns1:title

	1.3
	Select element by occurrence with remote element:

Select a particular occurrence of an element that is repeated based on the value of another field.
	Select the title of the book based on an index value provided
 /mvc:eForm/mvc:Data/ns1:orders/ns1:book[position() = /mvc:eForm/mvc:Data/mvc:formData/mvc:selectedBookNumber]/ns1:title

	1.4
	Select & Filter by another parent value:

Select a particular element, but filter based on another value in a parent node
	Select the year of the first book in the WEB category

/mvc:eForm/mvc:Data/ns1:orders/ns1:book[@category = 'WEB']/ns1:year

	1.5
	Select & Filter by remote element match:

Select a particular element, but filter based on a value matching another element somewhere else in the the XML document.
	Select the category name description of all the book categories that have orders
/mvc:eForm/mvc:Data/categories/category[@type = /mvc:eForm/mvc:Data/ns1:orders/ns1:book/@category]

	1.6
	Select element based on contains value:

Select a particular element by the contents containing a specific value.
	Select the title of the first book by an author called Erik
/mvc:eForm/mvc:Data/ns1:orders/ns1:book[contains(ns1:author, "Erik")]/ns1:title

	1.7
	Select element based on contains element:

Select a particular element by the contents containing a specific value.

	Select the title of books by an author searched for, that are in English
/mvc:eForm/mvc:Data/ns1:orders/ns1:book[contains(ns1:author,/mvc:eForm/mvc:Data/mvc:formData/mvc:searchFor)
and ns1:title/@lang = "en"]/ns1:title

	
	
	

	2.1
	Check if value present:

Check a particular element to see if it has a value.
	Check if the selectedBookNumber field has a value
/mvc:eForm/mvc:Data/mvc:formData/mvc:selectedBookNumber[. != '']

	2.2
	Check if field or value missing:

Check if a particular element is not present in the document, or is present but does not have a value
	Check if the fourth category does not have a category type defined
not(/mvc:eForm/mvc:Data/mvc:formData/mvc:selectedBookNumber[. != ''])

	2.3
	Check value using operator:

Check if a particular element has a value based on an operator check.
	Select the first book orders price with book prices > 35
/mvc:eForm/mvc:Data/ns1:orders/ns1:book[ns1:price > '35.00']

	
	
	

	3.1
	Join values together:
This approach is often used in Data Bindings for the display of output data that needs combing e.g. a set of address: house number, street, town, etc.
Note: If you want to add a single quote in the text, then you can switch the quote characters wrapping the string to double quote’s e.g. ” wrote'”
	Select the author of the book and join with the title placed in quotes

concat(/mvc:eForm/mvc:Data/ns1:orders/ns1:book/ns1:author, ' wrote”', /mvc:eForm/mvc:Data/ns1:orders/ns1:book/ns1:title, ' ”')

	3.2
	Substring values:

Take part of the value of the field.
	Shorten the year value of the first book. In this example, take the last two digits of the year
substring(/mvc:eForm/mvc:Data/ns1:orders/ns1:book[1]/ns1:year,3,2)

	3.3
	Combine functions and values:

Merge characters and fields together along with substring of another field.

Note: This technique may be used for displaying a Credit Card Number of Telephone Number, when you wish to obscure the exact details.
	Merge ‘**’ fields with the last two digits of the first books year
concat(‘**’,substring(/mvc:eForm/mvc:Data/ns1:orders/ns1:book/ns1:year,3,2))

	
	
	

	3.4
	Round Values:

Rounds the number matched by the XPath query to the nearest integer.
	Round the price of book 2

round(/mvc:eForm/mvc:Data/ns1:orders/ns1:book[2]/ns1:price)

	3.5
	Count occurrences:

Counts the number of occurrences matched by the XPath query.
	Count how many books ordered
count(/mvc:eForm/mvc:Data/ns1:orders/ns1:book)

	3.6
	Sum values:

Sums the numbers matched by the XPath query.
	Sum all the prices of the books ordered
sum(/mvc:eForm/mvc:Data/ns1:orders/ns1:book/ns1:price)

	3.7
	Average values:

Sums the numbers matched by the XPath query.
	Average all the prices of the books ordered

sum(/mvc:eForm/mvc:Data/ns1:orders/ns1:book/ns1:price) div count(/mvc:eForm/mvc:Data/ns1:orders/ns1:book/ns1:price)

	3.8
	Always perform an action.

This is sometimes used with show/hide/disable options.

Note: There is also a false() function.
	true()

	3.9
	Conditionally choose the data value to output:

This is a trick that relies on the concat function only matching one of the values. The first value checked for is also nested inside the second values predicate. So, if the first is matched, the second can’t be.

Note: This approach is also useful if you want to place a default value from another element into a field, if an existing value is not present.
	Output the first search field ‘searchFor’ if present, otherwise output the second search field ‘selectedBookNumber’ if the first search field ‘searchFor’ does not have a value. Value output is ‘Erik’.

concat(/mvc:eForm/mvc:Data/mvc:formData/mvc:searchFor[. != ''], /mvc:eForm/mvc:Data/mvc:formData/mvc:selectedBookNumber[not(/mvc:eForm/mvc:Data/mvc:formData/mvc:searchFor[. != ''])])

	3.10
	Conditionally output static strings:
This is a trick that relies on the xpath ‘number’ function converting false value to 0 and true to 1. This means the number used by the substring function becomes 0 or 1 * n, which allows it to output the number of characters of the string. The ‘n’ values must be the number of the characters in the first string.
	If the ‘selectedBookNumber’ value is present then output ‘Book Selected’, otherwise ‘Author Selected’.

concat(substring('Book Selected', 0, number(/mvc:eForm/mvc:Data/mvc:formData/mvc:selectedBookNumber[. != '']) * 13), substring('Author Selected', 0, number(not(/mvc:eForm/mvc:Data/mvc:formData/mvc:selectedBookNumber[. != ''])) * 16))

	
	
	

Further Advanced Notes:

1) There are lots of other XPath functions, but the list above contains the most common used in WebMaker.

2) It is important to keep in mind that functions can be nested and embedded into other queries. This makes the XPath query language very powerful.

3) FormMaker - On the Data Bindings screen there is an “XPath Guidelines” collapsible section, that in some situations will provide further details of tips and tricks e.g. Referencing specific elements within repeating data structures.

4) RuleMaker – By default RuleMaker operates on an XML document known as the “factbase”. It is possible to use additional “variable” XML documents in addition to the default “factbase” XML document. If XPaths are used that inspect a variable document elements, then the $variable_name has to prefix the XPath value rather than the default ‘/’ root element. If an XPath then needs to have a nested XPath reference to an element in the main factbase, then that XPath will need to be prefixed with $factbase rather than default ‘/’ root element.
